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Abstract 

In deductions of Lorentz transformations of the special theory of relativity, iinearity of 
transfOrmation is always postulated. There are only a few discussions about this linearity 
in which it is deduced from some basic physical facts. Here, it is shown to br almost a 
mathematical consequence of the principle of relativity. 

1. Introduction - -  

In order to deduce the law of  transformation of coordinates, generally 
known as the Lorentz transformation, in the special theory of relativity, 
it is customary to assume that the law of transformation is a linear one. 

Einstein, in his original paper (i905; compare also Bergrnann, 1960) 
pointed out that the linearity of the transformation should be attributed to 
homogeneity of  space and time. In other works (Einstein, 1955; compare 
also Pauli, 1921) linearity of  transformations is considered as a consequence 
of  the principle of  constancy of velocity of light. 

According to Pauli (1921) this linearity can be justified by the statement 
that a uniform rectilinear motion in one frame Kmust  also be rectilinear in 
the transformed frame K'.  Further it is to be taken for granted that finite 
coordinates in K remain finite in K'. Here K and K'  refer to two reference 
systems in uniform rectilinear motion. 

Fock discussed the question of linearity of transformation in some detail. 
In his general derivation of linearity, the starting fundamental postulates 
are: 

'(i) To a uniform rectilinear motion in the coordinates (xi) there must 
exist a motion of the same nature in the transformed coordinates (x/) .  
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Cu') To a uniform rectilinear motion with light velocity in the coordinates 
(x~) there corresponds a motion of  the same nature in the coordinates 
(x,'). 

Here the index,/runs through O, I, 2, 3 :  

In the derivation of Fock, it is seen that from the postulate (~, the trans- 
formations of  coordinates are obtained as those given by fractional linear 
functions ~ith a common denominator (i.e. projective transformations of 
collineations), and from the postulate (in they are obtained as those given 
by rational functions, of which the numerators are linear and the common 
denominator is a quadratic of some special for m (M6bius transformations), 
and from the two pos~.ulates taken together, linearity of transformation is 
obtained. Any one of  the above, two postulates, supplemented by the 
postulate that "finite coordinates remain finite under transformations', 
implies the linearity of the transformations. 

Thus, in the literature ~on the special theory of relativity, linearity is 
considered either as a simplifying asst, mption or as something connected 
with the special structure of the space-time continuum, like homogeneity of 
space and time, or with some basic physical facts, like existence of recti- 
linear motion, or constancy of the velocity of light along a line in vacuum. 
But from a close mathematical analysis it appears that linearity of transfor- 
mations is neither an additional assumption nor a consequence of some 
other basic geometrical or physical fac~, which in any strict mathematical 
development are considered as postulates. 

The object of this paper is to show that linearity of transformations is 
implied by the simple fact of  finite coordinates remaining finite under 
transformations, which is almost a necessary consequence of the principle 
of  relativity. For this in Section 2, we shall discuss the mathematical 
nature of  transformation laws of interest in physics, and clearly state the 
mathematical postulate. In elegant mathematical development of physical 
theories, it is essential to state clearly general mathematical postulates 
regarding functions used in the development, but, unfortunately, this cannot 
be seen in the discussions ofthe special theory ofrelativity. Then in Section 3 
linearity of  transformation will be deduced from the simple fact that 
finite coordinates remain finite. In Section 4, the nature of implication of 
the said fact of finite coordinates remaining finite by the principle of 
relativity is discussed. In concluding remarks, the reason why global 
linearitydoes not appear in the general theory of relativity is briefly pointed 
out. 

2. Mathematical Nature of Transformation Laws 

In physics, one is interested to have the laws expressed in terms of linear 
function s or polynomial functions, or, in complicated cases, of rational, or 
algebraic, or some well-known transcendental functions. In geometry 
(science of space) transformations are "nothing more than a generalisation 
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of  function' (Klein, 1925).. For application in physics in general, and in the 
special theory of  relativity in particular, the point transformations of  
geometries, in which the points are base elements and points are transformed 
into points, are useful. The analytic expression of  a point transformation 
in n-dinm.nsional space is given by 

xl '=f j (x l ,Xz ,  . . . .  x.) i =  1,2, . . . .  n 

where (xi,x2 . . . .  ,x.) and (x(,x2", . . . .  x.') are coordinates of  a point with 
respect to frames of  reference K and K'. In general theories of  transforma- 
tions,ft's, the correspondence defined as above is reversibly one-valued and 
continuous. But in quantitative discussions, a specification as linear function 
or  rational functions or the like is necessary. 

Following Einstein (190~, the space-time continuum [R 4] is four- 
dimensional, i.e. a point is given b)' a quadruple {xt}, where ican have values 
I, 2, 3, 4. In some developments, i is taken to have values 0, !, 2, 3. Here 
the range of  i will be taken as l, 2, 3, 4. In the first paper of  Einstein (1905), 
in the beginning, for the introduction of  simultaneity, time (proportional 
to the fourth coordinate) is taken as a general analytic function of  co- 
ordinates and then it is approximated to by a linear function ~hen the: space 
coordinates are chosen "infinitesimally small', i.e. he had Ta)ior expansion 
o f  the function (at least in finite form), in his mind. 

In his book (Einstein, 1955), in the general discussion, of  coordinate 
transformations of  pre-relativistic physics, Einstein took A's, where 
i = l, 2, 3, as functions expressible in Taylor series, and subsequently he 
used this discussion in the background. Fock 0959) tookf~'s as functions 
l~aving continuous partial derivatives of  second order. 

In Weierstrassian development of  function theory, functions are intro- 
duced by power series. All the functions of  frequent use in general quantita- 
tive discussion of  mathematics and physics are cxpressible in power series 
in some domains, in which they are called analytic. Whenf / s  are sought in 
the form with a linear part, together with terms involving higher power of  
x~'s, fi 's  are really taken as anal)tic, at least locally. Then the fact that 
finite coordinates remain finite in transformations implies that A's are 
bounded. Thus the transformation functions are bounded in any finite 
region o f / P ,  and are analytic everywhere except at singular points. Now, 
if R 4 be embedded in the usual way (Synge, 1956) in C 4 by replacing x / s  
by z/s ,  where z~ = xj + / z j ; j  = !, 2, 3, 4 then the transformation functions 
c a n  easily be extended analytically from any domain/9, of  R "t to a domain 
D, of  C 4. It is well known in the theory of  complex functions of  several 
variables (Fuks, 1963) that i f  a function f (z l ,zz ,  z3,z4) be analytic in the 
entire closed polycylinder, D = {[zt - Zo[ < T'~, k = 1, 2, 3, 4} with possible 
exclusion of  some set E ~ D about which to each point with first three 
coordines (cq, ce:, ~,~) o f  the closed polycylinder Da= {[zt-zo[ < ~'i, 
k4=j and k, j =  1, 2, 3, 4,for a f i xed j  there corresponds at most a finite set 
(~:, ~z, ~3,fl~), s = I, 2, 3, 4, ~.., lying in E, while [~,t < Y4, and iff( , i ,  z2, z3, z4) 
be bounded in each region Do, where ~o ~ D, then its values at the points of  
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the set E may be revised or extended so that the function may be analytic in 1~. 
The above theorem is an alternative generalised version of the theorem of 
removable singularity of giemann. Moreover, in consistency with the 
general principle of continuity of macroscopic physics, the transformation 
function should be assumed to be continuous. It is also known, from the 
theory of functions of several complex variables (Fuks, 1963), t ha t / f  a 
function f(zj ,zz,  zj, z4) be continuous in a neighbourhood U of  a point P in 
C 4 and anal)tic in U, except possibly on points on a/ffpersurface ~ in C 4 
containing P as its ordinary point and giL'en by 

74 = ~(Xl, X2, X3, X4, YJ, Y2, Y J) (2. I) 

then the funclion may be made analytic in U. Unless the singular points of 
the transformat[c,,s are distributed most unfavourably they can be removed 
and the transformation functions can be taken to be analytic in same 
domain in C 4 containing/i ~ and so in/P.  So, without loss of any generality 
it is possible to assume that the transformation, besides being one-to-one, 
is represented by functions which are analytic in the entire/P. 

3. Linearity of  Transformation Law 

In the preceding section, it is seen that the transformation functions are 
analytic in/P.'l-hey are expressible as a power series about origin as 

f I (Xl ,X2,  X3, X4) = ~ a,~lt~mxlJ-x'2tx31x4 m 
S,*.t,m (3.1) 

i -  1,2,3,4 j , k , l ,m  =0, i,2 . . . .  

Then, the complex valued functions of complex variables, 

fdz, ,zz ,  zj, z , )=  Z a~i~,~z,Szltz3'z, " i=1,2,3,4 (3.2) 
J,k,i,m 

which are evidently a natural analytic continuation of the real functions 
given by (3.1) i n / P ,  cannot have finite associaled radii of convergence 
(Fuks, 1963) and hence are integral functions. The uniqueness of analytic 
continuation are guaranteed by the following theorem of mathematical 
analysis (Dieudonn6, 1964). 

"let.4 c Cp be an open connected set, f and g two analytic functions in A 
with values in a complex Banach space F. Let U be an open subset of  A, b a 
point in U and suppose that f (x )  =g(x) in the set U N (b + R p) then f (x )  = 
g(x) for every x ~ A." 

As C 4 is itself a complex Banach space and A and U may be taken as 
C4and b as the origin, the result is evident. 

Proposition: Transformation functions f~ are linear. 

Proof: Now, the series, ~ a~,s zlPz2qz3"z4 ", for f ,  i = 1,2, 3, 4 are absolutely 
convergent, and so, unconditionally convergent in the entire (open) C 4. 
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So, by rearrangements of terms, .f l 's  can be written in the form ofa  psuedo- 
polynomial as: 

f•z,, z2, z3, z4) = ~ A~.n(zs, zt, z,) z~,  
" - 0  0 .3 )  

i , j ,k , l ,m= 1,2,3,4 j ~ e k 4 : l ~ i  

where d~.l)(zs, zt, zl) are analytic functions of zj, z~, za. Asf{s  transform 
points at infinity only to points at infinity, so, for each fixed set of finite 
values ofzj, z,, zt the series in the right-hand side reduces to a polynomial of 
one variable, z.. Asf{s are one-to-one for each set of (zj,z2,z3,z4), so the 
pseudo-polynomial must be linear in z .  (m = 1,2, 3,4). Thus 

4 
f j (z , ,z2,z , ,z ,)= :~ a}"zs, i= 1,2~3,4 (3.4) 

J - I  

Remarks 

Now, an alternative sophisticated proofcan also be sketched by using two 
known theorems (Fuks, 1963) in the following way. For discussion with 
points at infinity, it is seen to be convenient to extend the usual space C4 to 
a space/'4 by the compactification of  the image of the space C4 in the space 
P4 by points at infinity, where P,, in distinction from C4, is compact. It is a 
well-known practice to interpret the usual coordinate transformations of a 
space, as its mapping to itself (Synge, 1956). Then one can use the theorem: 
'The most general meromorphic (in the strict sense) mapping of the whole 
projectively completed space t'4 into itself has the form 

4 

Z s t =  ~ s - t  0.5) 4. 
t," + y 

J - I  

that is, it is a projective transformation' (Fuks, 1968) where a continuous 
mapping Tofthe region D c p~ is said to be meromorphic (in the strict sense) 
flit  is analytic at all points z of D, for which T(z) ~ T(D) c C 4, and at the 
points z of D to which there correspond points at infinity, the mapping ~T 
is analytic, where ~r is an appropriate projective mapping which carries the 
point T(z) into finite z'. 
Now, 

I 
Q = , 0 . 6 )  

b'o" + b "z, 
J - I  

is zero at points at infinity. As for finite zj's, zj' are finite, so, 101 is finite for 
finite zs's. Thus, by Liouville's theorem Q is a constant, i.e. the transforma- 
tions (3.6) are linear. 



90 M. Dtrrr^ et al. 

4. The Principle of  Relativity and Linearity 

As already discussed in Section 2, the main aim ofthe majority ofphysical 
investigations is to express a law of nature in the form F(x)= 0, where 
F(x) is locally analytic function in R4 in terms of a reference system K. 
With reference to another reference system K" a law of nature is to be 
obtained a-~ 

F ( x 3  - FCf(x3) = o 

There are various equivalent formulation of the principle of relativity in 
the literature. In the language of Fock (195o): as 

",.. the principle of  relativit), asserts that the two sequences of  events will 
be exactly the same (at least in so far as they are determined at all.) l f  a 
process in the original system can be described in terms of  certain fimctions 
o f  the space and time coordinates of  the first frame, the same fwtctions of  
space and time coordinates of  the second frame will describe a process 
occurring in the copy." 

Here, a process refers to a physical process or event and frames, to frames of 
reference K and K'. 

In the strict sense, that F and F '  are same, means that they are of same 
forms in terms of variables, or in mathematical terminology, F is an auto- 
morphic function with respect to group of transformations (i.e. admissible 
coordinate transformations). In the theory of automorphic functions 
(Ford, 1951; Dutta & Debnath, 1965), and also in the investigations of 
invariant functions under a group of coordinates transformations, the group 
of transformations are given and the form of the functions automorphic 
with respect to the group is found out. But, in the special theory of 
relativity the first problem is to find out the group of transformations with 
respect to which the function expressing physical process are automorphic. 
As up to now the physical investigations ~re mostly based on mechanics or 
the theory ofelectromagnetism, in the special theory, basic physical processes 
arc taken as laws of mechanics and/or the constancy of velocity of light (or 
invariance of the wave front). But if basic physical facts are not introduced 
and the nature of physical processes is kept open, then the main problem 
does not appear to be solvable in its generality, but the linearity of co- 
ordinates transformation can be inferred. For this, by the word 'same" in 
the formulation, we need not mean 'of the same form'. If the term 'same' is 
taken as to mean 'of the same function-theoretic nature' will be sufficient. 
I fFand  F' have always the same number of singularities of the same nature 
(where multiplicity has been taken into account), F and F'  are considered 
as 'same' function in function-theoretic discussions. The latter sense of the 
term 'same' is much weaker than that of being automorphie. Then for 
function-theoretic discussions, f ' s  defined in domains, DR of/?4 may be 
extended to domains Dc ofC 4 when Dc = D,~ and considered as functions of 
z , z  e Do In order that F and F '  are same always, it is sufficient that the 
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transformation functions z = ~ ( z 3  must not have any singularity for 
every Dc of analyticity of F's. Unless all F 's  expressing different physical 
laws be of  such form that the principal pgrts at every singularity o f  ~,'s 
(not of  F's) cancel each othec (an assumption which is highly unlikely), 
the transformation laws are necessarily analytic. Thus ~'s must be analytic 
and so bounded in every finite domain. Thus it remains valid in every 
finite domain Ds c De. This leads to the fact that finite coordinates in K 
remain finite in K'.  

Concluding Remarks 

Here, discussions are made generally from mathematical analysis, from 
the principle of  relativity and the general observations of mathematical 
nature of  physical laws without the introduction of  the specific physical, 
mechanical or. geometrical postulates. Then, naturally the question 
why the linearity is not significant in the genera: theory of  relativity 
becomes important. The answer to this lies in the fact that the present 
discussion is based on the existence of coordinate systems in which each 
coordinate varies from - 3  to + ~  along a real line. When in a theory a 
broader class of coordinate systems are included, the above discussions are 
not valid. For this, linearity is not to be used in the general theory of  
relativity. 
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